P.R.GOVERNMENT COLLEGE (AUTOMONOUS), KAKINADA III B.SC MATHEMATICS – Semester VI (w.e.f. 2018-19) Course (Elective-VII (B)): Numerical Analysis

Total Hrs. of Teaching-Learning: 45 @ 3 h / Week

Total Credits: 03

Objective:

Wit

Ai)

911

90

(Fi

(1)

(1)

S

50

59)

Fi)

1

- To find the different types of errors in computation and then to reduce the errors
- To find the approximate Polynomial for the given data when the data is even or uneven by using interpolation, also we can find the differentiation even if the function is not known explicitly.
- To find the solution of Algebraic and Transcendental equations using Bisection, Falsi Position, Iteration and Newton Raphson methods.

NWIT

Unit I: Errors in Numerical Computation

(6 hrs)

Errors and their accuracy, Mathematical preliminaries, Errors and their analysis, Absolute, Relative and Percentage errors, A general error formula, Errors in a series approximation.

Unit II: Solutions of Algebraic and transcendental equations

(a) Bisection Method (b) Iteration Method (c) Method of false position (d) Newton Raphson Method (e) Generalised Newton Raphson method (f) Muller's method

Unit III: Interpolation - I

Duf to may TI

(8 hrs)

Errors in polynomial interpolation, Finite Differences, Forward, Backward and central difference operators, Shift and average difference operators, symbolic relation between the operators, Detection of errors by use of difference tables, differences of a polynomial.

Unit IV: Interpolation - II
Interpolation for equal intervals: Newton's forward, backward, Gauss forward, Backward, Strilling's, Bessel's and Everette's formulae.

<u>Unit V: Interpolation – III</u>

<u>Interpolation for uneven intervals</u>: Lagrange's interpolation formula, error in Lagrange's Interpolation, divided differences and their properties, relation between divided differences formula, Forward, Backward and central difference operators, Newton's divided differences, Inverse Interpolation.

Prescribed Text books:

Numerical Analysis by S. Ranganatham, MVSSN Prasad, Dr. V. Ramesh Babu.

S. Chand & Company

Reference books:

Numerical Analysis by S.S.Sastry Prentice Hall, NewDelhi Numerical Analysis by Kamali Surya Narayana, Schand&co, NewDelhi Numerical Analysis by Gupta &Malik, Krishna Prakashan media (P) Ltd Meerut"

BLUE PRINT FOR QUESTION PAPER PATTERN, SEMESTER-VI PAPER -VII, ELECTIVE VII (B)

UNIT	ТОРІС	V.S.A.Q	S.A.Q (including choice)	E.Q (including choice)	Marks Allotted
I	Errors in Numerical Computations	01	02	01+02	. 19
v II	Solutions of Algebraic and transcendental equations	02	03	·02	33
III	Interpolation - I	02	07_	0D	Lo
IV	Interpolation - II	02	02	01.	20
V	Interpolation - III	01	OF	01	. 19
A plant of	Total	08	10	06	106

V.S.A.Q. = Very Short answer questions (1mark)
S.A.Q.= Short answer questions (5 marks)
E.Q.= Essay questions (8 marks)

Very Short answer questions : 8x1M = 08Short answer questions : 6x5M = 30Essay questions : 4x8M = 32

Total Marks : 70

P.R.Govt.College (Autonomous), Kakinada III year B.Sc. Degree Examinations VI Semester Mathematics Course (Elective VII (B)) : Numerical Analysis

Paper VII: MODEL PAPER (w.e.f.2018-19)

Time: 3hours

Answer all the questions. Each question carries 1 mark

8X1 = 8M

- Estimate 1/3 to three significant digits and find its absolute error .
- 2. Define algebraic equation.
- Write the convergent condition for iterative method.
- Prove that Δ =E-1.
- Define Shift operator.
- Write the Gauss forward interpolation formula.
- Write the Bessel's Formula for interpolation
- Write the divided difference of $f(x) = x^2 5$ for the arguments 2 and 4.

.PART-II

Answer any three questions from each section. Each question carries 5 marks. SECTION A

- Evaluate the sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to four significant digits and find its absolute and relative errors
- Define absolute, relative and percentage errors and give an example.
 - 11. Explain Bisection Method.

- Solve the equation $\sin x=5x-2$ by iteration method. 12.
- Find a root of the equation $x^3-2x-5=0$ by using Newton-Raphson method.

SECTION B

- Prove that 1) E= e^{hD} 2) $\mu^2 = 1 + \frac{1}{4} \delta^2$ 14.
- Find the missing term in the following data given below

	Х	0	1	2	3	4
	у	1	3	9	_	81
١,	X	1				

- Derive Newton's forward interpolation formula
- Find the third divided difference for the function $f(x) = x^3 + x + 2$ for the arguments 1,3,6,11 Apply Stirling's frank to find the wheat f(1.22) fran 17.

0,191

K	0	0.5	1.0	1.5	2.0
F(n)	0	0,191	0.741	0 1433	0'1477

0341

Using the inverse Lagrange's Interpolation Formula if $y_1 = 4$, $y_3 = 12$, $y_4 = 19$, $y_x = 7$ then find the value of x

PART-III

Answer any four questions by choosing at least one question from each section. 4X8=32M

section c

- 19. If $u=4x^2y^3/z^4$ and errors in x, y, z be 0.001, compute the relative maximum error in u, when x=y=z=1.
- 20. Find the real root of the equation $x^3-9x+1=0$ by using Regula Falsi Method.
- Find the root of the equation $f(x) = e^x-3x$ by using Newton-Raphson method.

SECTION D

- 22. Prove that $(\frac{\Delta^2}{E})e^x \cdot (\frac{Ee^x}{\Delta^2 e^x}) = e^x$, the interval of differencing being unit
- 23. Using Newton's Forward interpolation formula, find the value of f(x) when x=1.4

X	1.1	. 1.3	1.5	1.7	1.9
Y	0.21	0.69	1.25	1.89	2.61

24. By means of Newton's divided difference formula, find the value f(8) and f(15) from the following table:

X	4	5	: 7	10	11	13
f(x)	48	100	294	900	1210	2028